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Abstract  18 

Evaporation (ET) is one of the crucial components of the water cycle, which serves as the nexus between global water, energy, 19 

and carbon cycles. Accurate quantification of ET is, therefore, pivotal in understanding various earth system processes and 20 

subsequent societal applications. The prevailing approaches for ET retrievals are either limited in spatiotemporal coverage or 21 

largely influenced by choice of input data or simplified model physics, or a combination thereof. Here, using an independent 22 

mass conservation approach, we develop water balance-based ET datasets (ET-WB) for the global land and the selected 168 23 

major river basins. We generate 4669 probabilistic unique combinations of the ET-WB leveraging multi-source datasets (23 24 

precipitation, 29 runoff, and 7 storage change datasets) from satellite products, in-situ measurements, reanalysis, and 25 

hydrological simulations. We compare our results with the four auxiliary global ET datasets and previous regional studies, 26 

followed by a rigorous discussion of the uncertainties, their possible sources, and potential ways to constrain them. The 27 

seasonal cycle of global ET-WB possesses a unimodal distribution with the highest (median value: 65.61 mm/month) and 28 

lowest (median value: 36.11 mm/month) values in July and January, respectively, with the spread range of roughly ±10 29 

mm/month from different subsets of the ensemble. Auxiliary ET products illustrate similar intra-annual characteristics with 30 

some over/under-estimation, which are completely within the range of the ET-WB ensemble. We found a gradual increase in 31 

global ET-WB from 2003 to 2010 and a subsequent decrease during 2010-2015, followed by a sharper reduction in the 32 

remaining years primarily attributed to the varying precipitation. Multiple statistical metrics show reasonably good accuracy 33 
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of monthly ET-WB (e.g., a relative bias of ±20%) in most river basins, which ameliorates at annual scales. The long-term 34 

mean annual ET-WB varies within 500-600 mm/yr and is consistent with the for auxiliary ET products (543-569 mm/yr). 35 

Observed trend estimates, though regionally divergent, are evidence of the increasing ET in a warming climate. The current 36 

dataset will likely be useful for several scientific assessments centering around water resources management to benefit society 37 

at large. The dataset is publicly available at https://doi.org/10.5281/zenodo.7314920 (Xiong et al., 2023).    38 

 39 

1 Introduction 40 

Land evaporation (ET), the total amount of water evaporating from the land surface to the atmosphere, is a crucial component 41 

of the terrestrial water cycle (Rodell et al., 2015; Wang and Dickinson, 2012). It includes the water evaporating from the bare 42 

soil, open water bodies, canopy-intercepted precipitation, sublimation, and transpiration from the plant stomata (Miralles et 43 

al., 2020). Since the global ET returns about two-thirds of the land precipitation back to the atmosphere, it sustains the water 44 

cycle by providing the moisture supply for precipitation and directly affects the partitioning of the Earth’s surface heat fluxes 45 

and subsequent heating and cooling effects (Good et al., 2015; Koster et al., 2004; Oki and Kanae, 2006). Thus, ET links the 46 

Earth’s surface and the atmosphere and acts as the key element for the interconnected global water, energy, and carbon cycles 47 

(Jung et al., 2010). Accurate quantification of ET is, therefore, imperative for studying the water cycle changes, freshwater 48 

availability and demand, weather and climate dynamics, earth system processes, and surface energy budget closures. However, 49 

ET is poorly constrained, especially at large scales compared to the other components of the water cycle (Syed et al., 2010; 50 

Jasechko et al., 2013; Chandanpurkar et al., 2017), which may become more uncertain with an intensifying hydrological cycle 51 

under a warming climate. To this end, the trends and variability of the global ET fluxes still remain contested (Dong and Dai, 52 

2017; Fisher et al., 2017; Pascolini-Campbell et al., 2020).  53 

Over the past few decades, ET-based science has advanced significantly across scales from leaf to global scales 54 

(Fisher et al., 2017). Several ET products derived from the data-driven and data assimilation methods, satellite observations, 55 

and simulations from the physically or empirically based land surface models have been developed (Long et al., 2014; Liu et 56 

al., 2016); a community effort that is still ongoing (Miralles et al., 2016). These ET products are dedicated to minimizing the 57 

existing shortcomings stemming from varying spatiotemporal scales and are tailored to specific forcing variables (Miralles et 58 

al., 2016). For example, Moderate Resolution Imaging Spectroradiometer (MODIS) ET data provides regular 1 km2 land 59 

surface ET over 109.03 million km2 of global vegetated land areas at 8-day, monthly and annual intervals (Mu et al., 2011). 60 

Also, recent deep learning-based methods have shown an enhanced ability for global ET estimation when compared against 61 

proxy estimates from satellite observations and sparse in-situ data (Koppa et al., 2022). Despite the large spatial and temporal 62 

scale ET retrievals, all of these datasets inherently possess several uncertainties originating either from the forcing datasets or 63 

propagated uncertainty through the varying model structures or a combination thereof. For example, accurate estimations of 64 

ET utilizing the land surface temperature (LST) or other satellite optical and thermal observations need clear skies and hence 65 
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are limited in temporal coverage due to the cloud cover issues (Long et al., 2014; Wang and Dickinson, 2012; Yang and Shang, 66 

2013). Similarly, the mismatch between the spatial scales of the forcing data and the vegetation data, in the case of the 67 

Normalized Difference Vegetation Index-based ET products, can result in large uncertainties (Yang et al., 2013).  68 

Owing to all these uncertainties associated with the different methodological approaches, model assumptions, and 69 

scaling issues, the resulting observed ET estimates and their future projections have huge variations from product to product 70 

(Liu et al., 2016; Wang and Dickinson, 2012; Wang et al., 2015). Such disparities generally impede selecting the most 71 

appropriate ET data and even make it contentious, at times, for their application in various hydrometeorological modeling 72 

studies, management, or policymaking frameworks, among others. Moreover, the traditional estimations and the standards for 73 

the validation of ET solely from ground-based measurements from, for example, lysimeters and eddy covariance flux towers, 74 

are also insufficient for larger basin-scale evaluations because of the sparsely distributed network (Pascolini-Campbell et al., 75 

2020; Wang and Dickinson, 2012). Such limited point observations can further lead to high spatiotemporal heterogeneity 76 

variability in the ET, suffering mainly from the uncertainties arising from the data gap filling and upscaling beyond their 77 

representative local areas (Liu et al., 2016; Pascolini-Campbell et al., 2020). Therefore, in the context of a changing climate 78 

and continually intensifying human activities, the paramount importance of ET in global and regional water cycles and 79 

associated land-atmosphere interactions fosters the need and underscores the importance of independent, large-scale, and 80 

better-constrained ET estimates.  81 

Since the multifaceted variable, ET, is difficult to measure from space or from in-situ records directly, it has to be 82 

derived through the physically driven models incorporating a variety of controlling atmospheric, radiative, and vegetative 83 

factors (Fisher et al., 2017). However, the recent advancement in mapping the other components of the water cycle, changes 84 

in the terrestrial water storage (TWS), in particular, has enabled an alternate assessment of ET at large basin scales, which 85 

often is the scale of interest in water resources management (Pascolini-Campbell et al., 2020). The Gravity Recovery And 86 

Climate Experiment (GRACE) and its successor GRACE Follow-On (both jointly referred to as GRACE hereafter) have 87 

provided the TWS (sum of all of the water storage components within a land mass) variations with unprecedented accuracy 88 

since 2002 (Tapley et al., 2004; Sneeuw et al., 2014; Rodell et al., 2018). When used in combination with the precipitation and 89 

runoff in a water balance equation, the changes in TWS can be used for an independent and mass conservation-based estimate 90 

of ET, which will be free from most of the above-mentioned shortcomings in the modeled, upscaled, or in-situ products (Rodell 91 

et al., 2004; Bhattarai et al., 2019). Moreover, the resulting ET will be better constrained since the GRACE inferred TWS 92 

contains the embedded signals of both the natural variability and the anthropogenic influences. The major limitation with 93 

GRACE TWS variations is, however, its coarse spatial resolution (Ramillien et al., 2006) which we take the edge off by 94 

limiting our analysis to the global land and major global basins.  95 

Previous studies employing the water balance approach either rely on single datasets of precipitation and/or runoff 96 

(Gibson et al., 2019; Liu et al., 2016) are focussed on the regional scales (Castle et al., 2016; Pascolini-Campbell et al., 2020; 97 
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Rodell et al., 2004; 2011; Swann et al., 2017; Wan et al., 2015). A few global studies (e.g., Liu et al., 2016; Miralles et al., 98 

2016; Ramillien et al., 2006; Zeng et al., 2012; Lehmann et al., 2022) are limited either in terms of data used or in the temporal 99 

coverage. Here, we leverage a multitude of precipitation, runoff, and TWS changes (23, 29, and 7, respectively) datasets and 100 

employ the water balance approach to generate a total of 4669 subsets of ET during 2002-2021 for global land and major 168 101 

river basins. We rigorously assess the uncertainty bounds of the resulting ET and also analyze the relationship with various 102 

attributes such as the basin area, climate (aridity index, AI), and human interventions (irrigation). This water balance approach 103 

checks global and basin scale ET given the spatial accumulation of errors in LSM- or RS-based ET products (Pascolini-104 

Campbell et al., 2020). Given the ongoing controversy over the reliability of existing ET products, while in situ observation 105 

data are scarce (Douville et al., 2013; Zhang et al., 2016), the inter-comparison of mass-balance derived monthly ET ensemble 106 

estimates with several existing ET datasets provides a way to benchmark and improve the estimate of ET. We expect our 107 

product will be relevant for various scientific and societal applications, including the study of extreme events, water and carbon 108 

cycle, agricultural management, sea level budgeting, biodiversity assessments, global and regional hydrological cycle, water 109 

resources management, ecosystem resilience, and for improving weather predictions across scales (Fisher et al., 2017).  110 

2 Methods 111 

2.1 Water balance equation 112 

The terrestrial water balance method was used to produce the ET-WB dataset. For a basin scale, it can be written as follows: 113 

𝐸𝐸𝐸𝐸 = 𝑃𝑃 − 𝛥𝛥𝛥𝛥 − 𝑅𝑅 ±  𝑊𝑊𝑊𝑊 (1)   114 

where P is the basin-averaged precipitation, and R is the river flow or runoff going outside the basin. ΔS is the monthly storage 115 

change which is calculated as the backward difference of the terrestrial water storage (i.e., the changes in the month of 116 

calculation and the previous month), while different computation methods, such as the backward difference combined with a 117 

three-month running average might produce subtle difference (Long et al., 2014; Pascolini-Campbell et al., 2020). WD denotes 118 

the diverted water volume inside/outside the basin. All the water fluxes are on the monthly scale from May 2002 to December 119 

2021 and expressed in the unit of millimeters (mm/month) of equivalent water depth. WD is not considered in our study 120 

because the amplitude of the transferred water of most projects is generally small relative to other water components and/or 121 

directly flows outside the basin through the river channels. Therefore, the WD influences on the water balance ET estimations 122 

might be considered small, even for the 14 major existing projects located across the 168 studied basins from the Global Water 123 

Transfer Megaprojects depository (Shumilova et al., 2018) (Table S1). Although the terrestrial water balance method has been 124 

extensively applied in different river basins of the world (Rodell et al., 2004; Long et al., 2014; Li et al., 2019), a global 125 

database is still lacking, and the systematic uncertainty, variation, and distribution also remain unexplored from a global 126 

perspective. 127 
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We performed the calculation over the 168 major river basins of the world from the Global Runoff Data Centre 128 

(GRDC, https://www.bafg.de/GRDC/EN/Home/homepage_node.html) and the global land excluding Antarctic and Greenland 129 

(Fig. 1). These selected basins cover a wide range of climate conditions and human intervention with a minimum area of 130 

~64,000 km2, which is sufficiently large for the retrieval of TWSA from GRACE solutions at basin scale at least in the 131 

hydrology community (Vishwakarma et al., 2018). Apart from the terrestrial water balance, the atmospheric water balance 132 

also offers an effective alternative framework to estimate ET as it is also an important factor in the atmospheric water cycle, 133 

i.e., the residual precipitation, the horizontal divergence of the vapor flux, and the change in column water vapor. Although 134 

such an alternative estimation of ET from the independent atmospheric data can potentially supplement the water balance-135 

based ET (referred to as ‘ET-WB’ hereafter), this is outside the scope of our study.  136 

 137 

 138 
Figure 1: Location and attributes of the 168 studied river basins. The labeled numbers represent the basin ID. Please find further 139 
details in Table S2. The irrigation information is obtained from the latest version of the Food and Agricultural Organization (FAO) 140 
Global Map of Irrigated Areas (https://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/latest-141 
version/). The aridity index information is collected from the Version 3 of the Global Aridity Index and Potential Evapotranspiration 142 
Database (Zomer et al., 2022). The inserted pie chart indicates the percentage of irrigation area from different water sources to the 143 
basin area. The radii are proportional to the total percentage of the equipped irrigation area, which has been re-scaled using the 144 
natural logarithms after adding 10 to avoid negative (very small) values for better visualisation.  145 

2.2 Evaluation metrics 146 

The ET-WB dataset was compared with multiple global ET products (see details in the Data section) at various temporal and 147 

spatial scales. Firstly, the comparisons were conducted at the monthly and annual time scales over global land and selected 148 

168 river basins to investigate the sensitivity of the ET-WB performance using various evaluation metrics, including Pearson 149 
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correlation coefficient (CC), Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), and relative bias (RB). They 150 

describe different aspects of ET-WB performance; for example, CC [-1,1] measures the linear correlation with auxiliary ET 151 

products, and NSE (≤1) determines the relative magnitude of residuals between observations and predictions relative to the 152 

variance of the former. RMSE (⩾0) quantifies the differences between ET-WB and other existing ET products, while it is not 153 

normalized and challenging to compare basins with different ET amplitudes. As such, the metric RB (can be negative or 154 

positive) is used to express the relative bias of ET-WB compared with other ET datasets over the period. Mathematically, these 155 

metrics are defined as follows: 156 

𝐶𝐶𝐶𝐶 =
∑(𝐸𝐸𝐸𝐸𝐺𝐺 − 𝐸𝐸𝐸𝐸����𝐺𝐺) ∙ (𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊 − 𝐸𝐸𝐸𝐸����𝑊𝑊𝑊𝑊)

�∑(𝐸𝐸𝐸𝐸𝐺𝐺 − 𝐸𝐸𝐸𝐸����𝐺𝐺)2 ∙ �∑(𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊 − 𝐸𝐸𝐸𝐸����𝑊𝑊𝑊𝑊)2
(2) 157 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑(𝐸𝐸𝐸𝐸𝐺𝐺 − 𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊)2

∑(𝐸𝐸𝐸𝐸𝐺𝐺 − 𝐸𝐸𝐸𝐸����𝐺𝐺)2
(3) 158 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��
∑(𝐸𝐸𝐸𝐸𝐺𝐺 − 𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊)2

𝑛𝑛
� (4) 159 

𝑅𝑅𝑅𝑅 =
∑(𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊 − 𝐸𝐸𝐸𝐸𝐺𝐺)

∑𝐸𝐸𝐸𝐸𝐺𝐺
∙ 100% (5) 160 

where 𝐸𝐸𝐸𝐸𝐺𝐺  represents the auxiliary global ET products for comparison with the ET-WB, i.e., 𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊 in Equations 2-5. Secondly, 161 

further comparisons were performed at the level of long-term mean and trend, which were calculated using Sen’s slope method 162 

(Sen, 1968). Sen’s slope method can overcome the impacts of outliers on time series and can be more accurate than the 163 

traditional linear regression, especially for the heteroskedastic time series (Sen, 1968). Different temporal coverage of the 164 

auxiliary global ET datasets is considered, so only consistent periods with the ET-WB are used for calculations. 165 

2.3 Uncertainty estimation 166 

Uncertainty in ET-WB and its contributing variables (e.g., P) is quantified using different methods. Specifically, we estimated 167 

the uncertainty in various TWSA datasets from GRACE solutions and GHM as the residual after removing the long-term trend, 168 

interannual signals, and seasonal cycles based on the Seasonal and Trend decomposition using Loess (STL) method (Cleveland 169 

et al., 1990). The STL method can robustly decompose the TWSA monthly time series into long-term, seasonal, and residual 170 

components, in which the long-term signal can be further separated as a long-term trend and the non-linear (interannual) signals 171 

(Cleveland et al., 1990; Scanlon et al., 2018; Vishwakarma et al., 2021) as: 172 

𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (6) 173 

where 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡is the original TWSA time series, 𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the long-term components of time series consisting of the long-174 

term trend and the remaining interannual components, 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the seasonal cycle time series of  TWSA, and 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is 175 

the noise and/or other high-frequency (i.e., sub-seasonal) signals. Further, the uncertainty in ΔS was computed from the 176 
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uncertainties in TWSA for back and forward months added in quadrature, followed by the determinations of the root mean 177 

squares (RMS) from different results (Long et al., 2014). However, a few studies also indicate that this method might 178 

overestimate the actual uncertainty as the residual temporal signals might contain real information (e.g., sub-seasonal signals) 179 

(Scanlon et al., 2018). For other water components, including P and R, we assumed the standard deviation (SD) across the 180 

ensemble as the uncertainties since we do not have the formal error budget for the multi-source global products from models, 181 

satellites, and field monitoring networks. Uncertainty in the auxiliary ET products used for comparison with ET-WB is also 182 

estimated using the SD method. It should be noted that the SD estimations may underestimate the actual uncertainty because 183 

of the inadequate number of datasets considered in our study. We took different strategies to estimate the uncertainty in ΔS 184 

and other variables because of the strong correlation of the selected GRACE solutions, which can lead to a very low SD among 185 

datasets. A similar situation can occur in R, where 23 out of 29 R datasets are from the G-RUN ensemble with similar 186 

algorithms (but with different meteorological forcing data). The SD of different auxiliary global ET products was also 187 

calculated for comparison, which can be written as: 188 

𝑆𝑆𝑆𝑆 = �∑(𝑋𝑋 − 𝑋𝑋�)2

𝑛𝑛
(7) 189 

where X is the hydrological time series of different variables. Thus, we could estimate the uncertainty in the ET-WB by 190 

propagating the above uncertainties in quadrature with the assumption of independence and normal distribution among 191 

different water fluxes (Rodell et al., 2004): 192 

𝑈𝑈𝐸𝐸𝐸𝐸−𝑊𝑊𝑊𝑊 = ���𝑈𝑈𝑃𝑃2 + 𝑈𝑈𝑅𝑅2 + 𝑈𝑈∆𝑆𝑆2�
2 (8) 193 

where 𝑈𝑈𝑃𝑃, 𝑈𝑈𝑅𝑅, and 𝑈𝑈∆𝑆𝑆 are the estimated uncertainty for P, R, and ΔS on the monthly scale, respectively. We utilized the RMS 194 

to represent the average uncertainty over the whole study period as: 195 

𝑅𝑅𝑀𝑀𝑆𝑆 = ��
∑𝑌𝑌2

𝑛𝑛
� (9) 196 

where Y denotes the monthly estimates of uncertainty in different variables (e.g., ET-WB). The relationships between 197 

uncertainty in ET-WB and basin area, climate condition (aridity), and human activities (irrigation) are also detected to 198 

thoroughly investigate the influential factors on the performance of ET-WB. 199 

3 Data 200 

Several criteria are applied to select the appropriate datasets for the development of ET-WB: (1) only the publicly available 201 

global datasets are chosen to increase the transparency and reproducibility of our study, (2) the temporal resolution should be 202 

equal to or smaller than one month, spanning at least from 2002 to 2014, (3) the spatial resolution should be finer than 2° to 203 

constrain the uncertainties over small river basins (~64,000 km2 for the minimum), and the spatial coverage should be 204 
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(quasi-)global to reach most river basins. Alternative factors like the frequency of data updates (mostly are near-real-time and 205 

a few are yearly), the recognition in the community (some datasets not being widely used were excluded), and the data types 206 

(try taking more categories of datasets into account, e.g., satellite, modeling, reanalysis, and in-situ-based products) are also 207 

considered. As such, we used 23 P, 29 R, and 7 ΔS datasets to generate a total of 4669 subsets of ET-WB during May 2002-208 

December 2021 over 168 river basins and global land, excluding Greenland and Antarctica. We simultaneously selected the 209 

datasets belonging to the same series but with different versions, for example, GLDAS-v1/v2 and NCER/CFSR, because the 210 

older version (e.g., NCER/NCEP) is still updating, and the improvements of the newer version might not be significant and 211 

consistent over all the regions of the world (Qi et al., 2018, 2020). Despite this, it is acknowledged that it is impossible to 212 

consider all the existing datasets meeting the above inclusion criteria because the development of global datasets is advancing 213 

rapidly. All the selected datasets are provided on a grid cell scale and converted into basin-scale based on the changing area of 214 

grid cells over latitude. Hence the varying spatial resolutions of datasets do not require the up/down-scaling processes in our 215 

study. Moreover, most of the products are on a monthly time scale, consistent with the ET-WB estimations. A few daily 216 

datasets are aggregated into monthly time scales by taking the sum from the first to the last day of the certain month, which 217 

might cause some discrepancies with the GRACE solutions because the time sampling of GRACE products is not strictly 218 

distributed within a month (Tapley et al., 2004). As different datasets might have varying temporal and spatial coverage (Fig. 219 

2), the missing months in recent one or two years due to update latency, as well as the basins suffering from incomplete spatial 220 

coverage, are set as NA values. Please find detailed information on the datasets used in our study in Table 1. A more intuitive 221 

work chain for the generation of ET-WB and the related data processing flow is presented in Fig.2. 222 

 223 
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 224 
Figure 2: Flowchart and the characteristics of the data sets in the study. Please see the data section for detailed descriptions of the 225 
various datasets. 226 

Table 1. Datasets used in our study.  227 

Variable Dataset Type Reference Selected 
period 

Temporal 
resolution 

Spatial 
resolution 

(longitude×
latitude) 

Spatial coverage 
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Runoff 

G-RUN Ensemble In-situ based Ghiggi et 
al., 2021 

2002.5-
2019.12 

Monthly 0.5°×0.5° Global land excluding 
Antarctica 

LORA-v1.0 Combined product Hobeichi 
et al., 2019 

2002.5-
2012.12 

Monthly 0.5°×0.5° Global land excluding 
Greenland and 

Antarctica 

WGHM GHM Schmied et 
al., 2021 

2002.5-
2016.12 

Monthly 0.5°×0.5° Global land excluding 
Antarctica 

Global River Flow 
and Continental 

Discharge Dataset 

In situ Dai and 
Trenberth, 

2002 

2002.5-
2018.12 

Monthly Gauge 
stations 

Global major river 
basins 

GloFAS-v2.1 Reanalysis Harrigan et 
al., 2020 

2002.5-
2021.12 

Daily 0.1°×0.1° Global land excluding 
Antarctica 

GloFAS-v3.0 Reanalysis Alfieri et 
al., 2020 

2002.5-
2018.12 

Daily 0.1°×0.1° Global land excluding 
Antarctica 

GloFAS-v3.1 Reanalysis Harrigan et 
al., 2020 

2002.5-
2021.12 

Daily 0.1°×0.1° Global land excluding 
Antarctica 

Precipitat
ion 

ERA5-land Reanalysis Muñoz-
Sabater et 
al., 2021 

2002.5-
2021.12 

Monthly 0.1°×0.1° Global land 

ERA5 Reanalysis Hersbach 
et al., 2020 

2002.5-
2021.12 

Monthly 0.25°×0.25
° 

Global land and ocean 

NOAA CIRES 20th 
Century-v3 

Reanalysis Slivinski et 
al., 2019 

2002.5-
2015.12 

Monthly 0.702°×0.7
02° 

Global land and ocean 

JRA55 Reanalysis Kobayashi 
et al., 2015 

2002.5-
2021.12 

Monthly 55 km×55 
km 

Global land and ocean 

MERRA2 Reanalysis Gelaro et 
al., 2017 

2002.5-
2021.12 

Monthly 0.625°×0.5
° 

Global land excluding 
Greenland and 

Antarctica 

NCEP NCAR-
Reanalysis 1 

Reanalysis Kistler et 
al., 2001 

2002.5-
2021.12 

Monthly 1.875°×1.9
048° 

Global land and ocean 
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NCEP DOE-
Reanalysis 2 

Reanalysis Kanamitsu 
et al., 2002 

2002.5-
2021.12 

Monthly 1.875°×1.9
048° 

Global land and ocean 

CFSR-v1&2 Reanalysis Saha et al., 
2010 

2002.5-
2021.12 

Monthly 0.5°×0.5° Global land and ocean 

WFDEI Reanalysis Weedon et 
al., 2014 

2002.5-
2016.12 

Monthly 0.5°×0.5° Global land excluding 
Antarctica 

PERSIANN CDR-
v1 

Satellite Ashouri et 
al., 2015 

2002.5-
2021.12 

Daily 0.25°×0.25
° 

60° S–60°N 

TRMM 3B43-v7 Satellite Huffman 
et al., 2007 

2002.5-
2019.12 

Monthly 0.25°×0.25
° 

50° S–50°N 

GSMaP Satellite Okamoto 
et al., 2005 

2002.5-
2021.12 

Monthly 0.1°×0.1° 60° S–60°N 

CHIRPS-v2.0 Satellite Funk et al., 
2015 

2002.5-
2021.12 

Daily 0.25°×0.25
° 

Global land between 
50° S–50°N 

GPM IMERG-v06 Satellite Huffman 
et al., 2019 

2002.5-
2021.9 

Monthly 0.1°×0.1° 60° S–60°N 

GPCP-v3.2 Satellite Huffman 
et al., 2022 

2002.5-
2020.12 

Monthly 0.5°×0.5° Global land and ocean 

CRU TS-v4.06 In situ-based Harris et 
al., 2020 

2002.5-
2021.12 

Monthly 0.5°×0.5° Global land excluding 
Antarctica 

GPCC-v2020 In situ-based Schneider 
et al., 2020 

2002.5-
2019.12 

Monthly 0.25°×0.25
° 

Global land excluding 
Antarctica 

CPC Unified In situ-based Chen and 
Xie, 2008 

2002.5-
2021.12 

Daily 0.5°×0.5° Global land 

MSWEP-v2.8 Combined product Beck et al., 
2019 

2002.5-
2021.12 

Monthly 0.1°×0.1° Global land and ocean 

PGF-v3 Combined product Sheffield 
et al., 2006 

2002.5-
2016.12 

Monthly 0.25°×0.25
° 

60° S–90°N 

GLDAS-v1 Combined product Rodell et 
al., 2004 

2002.5-
2019.6 

Monthly 1°×1° Global land excluding 
Antarctica 
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GLDAS-v2.0 Combined product Rodell et 
al., 2004 

2002.5-
2014.12 

Monthly 1°×1° Global land excluding 
Antarctica 

GLDAS-v2.1 Combined product Rodell et 
al., 2004 

2002.5-
2021.12 

Monthly 1°×1° Global land excluding 
Antarctica 

Actual 
evaporati

on 

MODIS16 Satellite Mu et al., 
2011 

2002.5-
2014.12 

Monthly 0.5°×0.5° 60° S–80°N 

FLUXCOM In situ-based Jung et al., 
2019 

2002.5-
2015.12 

Monthly 0.5°×0.5° Global land excluding 
Antarctica 

GLEAM-v3.6a Satellite Martens et 
al., 2017 

2002.5-
2021.12 

Monthly 0.25°×0.25
° 

Global land 

WGHM GHM Schmied et 
al., 2021 

2002.5-
2016.12 

Monthly 0.5°×0.5° Global land excluding 
Antarctica 

Terrestria
l water 
storage 

anomaly 

GRACE CSR RL06 
mascons-v02 

Satellite Save et al., 
2016 

2002.4-
2021.12 

Monthly 0.25°×0.25
° 

Global land and ocean 

GRACE JPL RL06 
mascons-v02 

Satellite Wiese et 
al., 2018 

2002.4-
2021.12 

Monthly 0.5°×0.5° Global land and ocean 

GRACE GSFC 
RL06 mascons-v02 

Satellite Loomis et 
al., 2019 

2002.4-
2021.12 

Monthly 0.5°×0.5° Global land and ocean 

GRACE CSR RL06 
Level-2 SH 

Satellite Swenson 
and Wahr, 

2006 

2002.4-
2021.12 

Monthly 1°×1° Global land and ocean 

GRACE JPL RL06 
Level-2 SH 

Satellite Swenson 
and Wahr, 

2006 

2002.4-
2021.12 

Monthly 1°×1° Global land and ocean 

GRACE GFZ RL06 
Level-2 SH 

Satellite Swenson 
and Wahr, 

2006 

2002.4-
2021.12 

Monthly 1°×1° Global land and ocean 

WGHM GHM Schmied et 
al., 2021 

2002.4-
2016.12 

Monthly 0.5°×0.5° Global land excluding 
Antarctica 

 228 
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3.1 Precipitation 229 

As summarized in Table 1, 23 precipitation data sets from different sources were used as input for the water balance equation 230 

(Eq. 1). Three global datasets based on in-situ observations are collected, including the Climatic Research Unit Time Series 231 

(CRU TS) database, the Global Precipitation Climatology Centre (GPCC) project, and the unified suite from NOAA Climate 232 

Prediction Center (CPC Unified). They generally rely on the point-scale collections of rain gauges worldwide to interpolate 233 

the gridded global products. Specifically, the CRU TS dataset incorporates more than 10,000 gauge stations to derive the 234 

monthly global gridded data since 1901 based on the angular-distance weighting method with an annual update (Harris et al., 235 

2020). The GPCC project contains the quality-controlled gauge measurements from approximately 67,200 stations worldwide 236 

with at least 10 uninterrupted years of available data and then interpolates and superimposes them on the final gridded product 237 

in the corresponding resolution (Schneider et al., 2020). The CRU TS and GPCC datasets have almost identical temporal 238 

coverage and resolution and mainly rely on national meteorological agencies and related international institutions like WMO 239 

and FAO. The CPC Unified dataset is constructed from over 30,000 rain gauges from Global Telecommunication System 240 

(GTS), Cooperative Observer Network (COOP), and other national and international institutions. The daily analysis is released 241 

on multiple spatial resolutions over the global domain from 1979 to the present (Chen and Xie, 2008). The main advantages 242 

of these gauge-based global datasets stem from their large historical records dating back to the beginning of the 20th century, 243 

high accuracy, and effective construction cost. However, they heavily suffer from inhomogeneous spatial distribution and 244 

substantial maintenance efforts, especially in developing regions with complicated topography like North Africa and Qinghai-245 

Tibetan Plateau. Therefore, the remote sensing technique has become a popular choice in learning global precipitation 246 

information in recent decades, which greatly improves precipitation measurement in ungauged and poorly gauged areas.  247 

Six remote sensing products have been collected to enrich our study, namely the Integrated Multi-Satellite Retrievals 248 

(IMERG) for Global Precipitation Measurement (GPM), Global Precipitation Climatology Project (GPCP), Precipitation 249 

Estimation from Remotely Sensed Information using Artificial Neural Network-Climate Data Record (PERSIANN-CDR), 250 

Tropical Rainfall Measuring Mission with 3B43 algorithm (TRMM 3B43), Global Satellite Mapping of Precipitation (GSMaP), 251 

and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). The TRMM 3B43 product algorithmically 252 

merges the microwave observations from multiple sensors, including precipitation radar and visible and infrared scanner (VIRS) 253 

loaded in the TRMM, which is a joint space satellite between NASA and Japan’s National Space Development Agency to 254 

monitor tropical and subtropical precipitation from 1997 to 2015 (Huffman et al., 2007). Then, the successor GPM mission, 255 

an international network of satellites carrying the first space-borne Ku/Ka-band Dual-frequency Precipitation Radar (DPR) 256 

and a multi-channel GPM Microwave Imager (GMI), continued to provide the global precipitation data up to the present 257 

(Huffman et al., 2019). The IMERG algorithm can integrate all information from satellites constellation at a given time to 258 

estimate precipitation on the Earth’s surface. The satellite observations in the TRMM era were also re-processed using the 259 

IMERG algorithm to create long-term continuous records, but the production stopped at the end of 2019. The GSMaP is a 260 

blended satellite-based precipitation dataset from the passive microwave sensors in low Earth orbit and infrared radiometers 261 
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in geostationary Earth orbit, which was developed by Japan Aerospace Exploration Agency (JAXA) and became the Japanese 262 

GPM standard product (Okamoto et al., 2005). The GSMaP product can distribute the global precipitation over the region from 263 

60° N to 60° S at a high spatial resolution of 0.1°×0.1°. In addition, the CHIRPS dataset, building on the ‘smart’ interpolation 264 

techniques and high resolution, long period of precipitation records from the infrared Cold Cloud Duration measurements, is 265 

developed by the USGS and Climate Hazards Group at the University of California. It has supplied precipitation estimates 266 

over global land within the range of 50° N to 50° S since 1981 (Funk et al., 2015). The PERSIANN product applies the trained 267 

artificial neural network on GridSat-B1 infrared satellite data of brightness temperature of cold cloud pixels to produce the 268 

rain rate estimates in the latitude band 60° S-60° N from 1983 to the (delayed) present (Ashouri et al., 2015). The GPCP 269 

precipitation dataset dynamically merges various satellite-based information, such as passive microwave and infrared data, 270 

along with the GPCC gauge measurements, contributing to the monthly precipitation estimates from 1979-present worldwide 271 

(Huffman et al., 2022). To control the systematic bias of the satellite sensors, bias correction based on gauge observations (e.g., 272 

GPCC) and satellite observations (e.g., GPCP) is necessary, particularly over regions having poor gauge coverage, like Africa 273 

and the ocean.  274 

Although the remote sensing technique is a robust option for global precipitation estimations, it still has some 275 

drawbacks, like the relatively short lifetime, the complexity of the retrieval algorithm, and the need for in-situ observations for 276 

bias correction. Thus, global reanalysis products that synthesize multiple geophysical and climatological data to produce high-277 

resolution precipitation simulations have been developed. We obtained nine reanalysis datasets, including the fifth-generation 278 

reanalysis product of the European Centre for Medium-Range Weather Forecasts (ERA5), the land component of ERA5 279 

(ERA5-land), the Twentieth Century Reanalysis by NOAA, the University of Colorado Boulder’s Cooperative Institute for 280 

Research in Environmental Sciences, and the U.S. Department of Energy (NOAA CIRES 20th Century), the Japanese 55-year 281 

Reanalysis (JRA55), the Modern-Era Retrospective analysis for Research and Applications (MERRA), the Reanalysis I project 282 

from the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP NCAR-283 

Reanalysis 1), the Reanalysis II project from the NCEP and DOE (NCEP DOE-Reanalysis 2), the NCEP Climate Forecast 284 

System Reanalysis (CFSR), and the WATCH Forcing Data methodology applied to ERA-Interim reanalysis data (WFDEI). 285 

The ERA5 reanalysis, as the latest global reanalysis following ERA-14, ERA-40, and ERA-Interim, provides a comprehensive 286 

field of the global atmosphere, land surface, and ocean waves by assimilating numerous historical observations (e.g., satellite 287 

precipitation data from microwave imagery and few gauge measurements) into the ECMWF Integrated Forecasting System 288 

(IFS) Cy41r2 (Hersbach et al., 2020). The ERA5 reanalysis can simulate the global precipitation with a sophisticated spatial 289 

and temporal resolution with a total of 137 mode layers of 0.01 hPa from 1959 to near real-time. ERA5-land is a re-run of the 290 

land component of ERA5, which is designed to provide a consistent view of land variables over several decades, but with an 291 

enhanced resolution than ERA5 (Muñoz-Sabater et al., 2021). The WFDEI meteorological forcing dataset, however, is 292 

generated based on the ERA-Interim reanalysis after bias correction from gridded observations (i.e., GPCC) and sequential 293 

elevation correction (Weedon et al., 2014). Several classic reanalyses from NCEP are used in our study. NCEP NCAR-294 

Reanalysis 1 project uses a state-of-the-art forecast system to perform data assimilation during the period 1948-now, while 295 
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with a relatively coarse spatial resolution of ~2°, which might cause some errors in small basins upon calculation of basin-296 

average precipitation (Kistler et al., 2001). We note the precipitation observations are not assimilated into the assimilation 297 

system, so the precipitation from the reanalysis are short-range model forecast accumulations (Janowiak et al., 1998). The 298 

NCEP DOE-Reanalysis 2 is an improved version of the NCEP NCAR-Reanalysis 1, including an updated model with more 299 

realistic physical parameterizations, fixed data assimilation errors, and more digested data (Kanamitsu et al., 2002). The NCEP 300 

DOE-Reanalysis 2 replaces the model precipitation at the land surface with observed data from NCEP/CPC global precipitation 301 

analysis that merges satellite and gauge measurements (Xie and Arkin, 1997). Furthermore, as an important update from NCEP, 302 

the CFSR uses a high-resolution model that is fully coupled with the atmospheric component at a resolution of 38 km with 64 303 

vertical levels from the land surface to 0.26 hPa between 1979 and the present (Saha et al. 2010). Similarly, the CFSR reanalysis 304 

applies the CMAP (Xie and Arkin, 1997) and CPC unified precipitation analysis to reduce the bias derived from the modeled 305 

precipitation in the initial version of NCEP NCAR-Reanalysis 1. Given most analyses only focus on the Earth’s status in the 306 

recent half-century, the NOAA CIRES 20th Century project is the first ensemble of sub-daily global atmospheric conditions 307 

spanning over 100 years from 1836 to 2015, providing the best estimate of the weather at any place and time based on the 308 

upgraded data assimilation method, higher resolution, and larger datasets of observations than the previous versions (Slivinski 309 

et al., 2019). We note the NOAA CIRES 20th Century did not incorporate any precipitation observations, meaning the 310 

reanalysis of precipitation is only from the predictions of models. Since the reanalysis provides 80 ensemble members to 311 

constrain the uncertainty fully, we take the ensemble mean as the final precipitation estimate. The JRA55 reanalysis, managed 312 

by Japan Meteorological Agency (JMA), also derives precipitation from remote sensing products combing the model forecasts 313 

since 1958, attempting to provide comprehensive fields of atmosphere to foster the applications in multidecadal variability and 314 

climate change (Kobayashi et al., 2015). The MERRA 2 analysis from the NASA Global Modeling and Assimilation Office 315 

using the GEOS-5.12.4 system covers the period from 1980 to the present with a latency of weeks, with the output resolution 316 

of 0.5°(latitude)×0.625°(longitude). The precipitation from MERRA2 reanalysis follows the assimilation strategy of CFSR, 317 

i.e., consider the CMAP and CPC Unified from NOAA CPC for assimilation. The quality of MERRA2 precipitation has been 318 

evaluated in a previous study, and relatively bad accuracy in high latitudes was reported (Reichle et al., 2017).  319 

We also consider several ‘combined products’ that merge the above-mentioned data sources, including gauges, 320 

satellites, and reanalysis to estimate precipitation, including the Multi-Source Weighted-Ensemble Precipitation (MSWEP), 321 

Princeton Global Forcings (PGF), and different versions of Global Land Data Assimilation System (GLDAS). The MSWEP 322 

dataset that is featured by full global coverage, high spatial (0.1°) and temporal (3-hourly) resolutions, and distributional bias 323 

corrections optimally merges the precipitation records from gauge measurements (e.g., GPCC), satellite solutions (e.g., 324 

TRMM), and reanalysis (e.g., JRA55) and achieve better performance than each of the members during the period 1979-now 325 

(Beck et al., 2019). The global and long-term PGF forcing dataset is constructed using the NCEO NCAR-Reanalysis 1 and 326 

multiple observation-based precipitation datasets such as TRMM, GPCP, and CRU TS products to perform the temporal and 327 

spatial downscaling, contributing to the high-resolution precipitation estimations from 1948 to 2016. The GLDAS forcing 328 

dataset generally applies precipitation of different types in different eras. Specifically, GLDAS (v1.0) switches from ECMWF 329 
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reanalysis during 1979-1993 to NCEP NCAR-Reanalysis 1 during 1994-1999 and finally uses the CMAP fields from 2001 to 330 

2019 with the NOAA/GDAS atmospheric applied in the year 2000 (Wang et al., 2016). However, the GLDAS (v2.0) 331 

precipitation is from the PGF dataset as the only source from 1948 to 2014. Differently, the GLDAS (v2.1) simulations are 332 

forced with a combination of GDAS, disaggregated daily GPCP precipitation, and AFWA radiation datasets from 2000 to the 333 

present. Please find detailed information about the product version and spatial/temporal resolution in Table 1. 334 

3.2 Runoff 335 

Similar to the precipitation, we also collected R datasets from different sources to feed the water balance equation. Firstly, we 336 

collected in-situ discharge measured at the mouths of the rivers from the dataset provided by Dai and Trenberth (2002), namely 337 

the Global River Flow and Continental Discharge Dataset. This observational dataset was compiled from many sources, 338 

including Bodo (2001), NCAR archive, and R-ArcticNET dataset (http://www.R-ArcticNET.sr.unh.edu), and has undergone 339 

the data quality controls during the compilation to avoid errata and inconsistencies. It contains monthly mean volume 340 

observations in 925 major rivers of the world since the 1900s (different rivers have varying lengths) and updates at an irregular 341 

time step (last updated in May 2019). The estimate of global continental freshwater discharge based on the dataset compares 342 

well with alternative estimates and ECMWF reanalysis, though there are some differences among the discharge into the 343 

individual ocean basins. The water volume is converted into the equivalent water depth by dividing the drainage area of the 344 

station. About one-third of the selected 168 river basins are included in this observational dataset, and the missing months 345 

without observation (e.g., after 2019) are set as NA values in the water balance calculation. Apart from this, most of the runoff 346 

datasets used in our study are from a global runoff reconstruction, named Global RUNoff ENSEMBLE (G-RUN ENSEMBLE), 347 

which provides a global runoff reanalysis of monthly runoff rates covering decades to the recent century at a resolution of 0.5° 348 

(Ghiggi et al., 2021). The observation-based G-RUN ENSEMBLE employs the random forest method to learn the runoff 349 

generation using the gridded meteorological observations (precipitation and temperature) with the calibration of the Global 350 

Streamflow Indices and Metadata Archive (GSIM) (Do et al., 2018). The most significant improvement of G-RUN 351 

ENSEMBLE compared to its previous version (GRUN, Ghiggi et al., 2019) is that it considers the forcing uncertainty by 352 

deriving a total of 23 subsets from multiple meteorological reanalysis and observations. Although one of the 23 G-RUN 353 

ENSEMBLE members forced by WATer and global CHange (WATCH) Forcing Data (WFD) only provides the global runoff 354 

data up to December 2001, we still keep it in our study for consistency. It would not influence the water balance estimations 355 

of ET-WB as all the missing months are taken as NA values during calculation. We note an implicit assumption in the 356 

generation of G-RUN ENSEMBLE is that the storage of river water loss can be minimal so the monthly river discharge of the 357 

river mouth equals the average catchment runoff depth. Given that the G-RUN ENSEMBLE is only calibrated from small 358 

catchments with areas ranging from 10 to 2,500 km2, this assumption might not be strictly valid for large river basins, although 359 

it has shown comparable performance with several global runoff simulations and reconstructions like the Global Drought and 360 

Flood Catalog (GDFC) (He et al., 2020) and ERA5. Moreover, the human activities, including human water use and reservoir 361 

management, lack a physical-based representation in the random forest machine learning method (but implicitly considered 362 
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during the model training), and the apparent outliers caused by human activities (e.g., an abrupt decrease of river discharge 363 

after dam construction) have been removed. Therefore, we additionally compare the R datasets used in our study (mainly from 364 

G-RUN ENSEMBLE) with the streamflow records from the GRDC archive in 53 river basins worldwide since they are the 365 

only regions where the discharge observations are available with the spatial and temporal consistency of our study (Table S3). 366 

A satisfactory performance of the estimations in the levels of multi-mean and long-term trends is found, which are the focus 367 

of our study and the relevant future applications (Fig. S1). We also used a synthesized global gridded runoff product that 368 

merges runoff estimates from different global hydrological models (GHM) constrained by hydrological observations using an 369 

optimal weighting method during 1980-2012 (namely Linear Optimal Runoff Aggregate, LORA), which works dynamically 370 

based on the comparisons with in-situ data when accounting for the variance among members (Hobeichi et al., 2019). The 371 

LORA product, with a consistent spatial resolution of 0.5°, is also used as the benchmarking dataset for G-RUN ENSEMBLE 372 

and achieved similar performance. A similar limitation is shared in these global gridded runoff reconstructions, i.e., the 373 

neglection of river routing, which may lead to an overestimation in the computed uncertainties over large basins. In addition, 374 

since the LORA is the merged result from eight GHMs with different physical structures and model parameterization schemes, 375 

the representation of the basins with significant anthropogenic activities should be taken with caution. For example, there is a 376 

low observed runoff of ~0 across the regions having high irrigation areas and/or artificial surfaces. As an important member 377 

of the LORA dataset, the WaterGAP Global Hydrology Model (WGHM), providing the global water resources dynamics from 378 

1901-2016 at a 0.5° resolution (Müller Schmied et al., 2021), is also selected in our study for the computation of ET-WB. The 379 

most recent version (2.2d) of the WaterGAP framework consists of five water use models, including irrigation, livestock, 380 

domestic, manufacturing, and thermal power sections, the linking model that computes net abstractions from groundwater and 381 

surface water, and the WaterGAP Global Hydrology Model (Müller Schmied et al., 2021). The discharge simulations are 382 

applied in the water balance calculation, which was forced by WFDEI precipitation during the study period and considered the 383 

human effects such as dam management. The river routing schemes follow Döll et al. (2014), where water is routed through 384 

the storages depending on the fraction of surface water bodies. The state-of-the-art global river discharge reanalysis, the Global 385 

Flood Awareness System (GloFAS), serves as a significant supplement to the R inputs in water balance. The GloFAS system 386 

simulates the global discharge by coupling runoff simulations from the specific model forced with the ERA5 reanalysis and a 387 

channel routing model. The GloFAS product aims to provide daily high-resolution (0.1°) gridded river discharge forecasts 388 

from 1979 to near real-time. Different versions of GloFAS reanalysis are used in our study, where the main differences are 389 

from the hydrological modeling scheme. For example, the GloFAS (version-2.1) applies a combination of the Hydrology Tiled 390 

ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land surface model with the LISFLOOD hydrological and 391 

channel routing model (Harrigan et al., 2019). The surface and subsurface runoff from the HTESSEL are used as input for the 392 

LISFLOOD model (Hirpa et al., 2018). For the newer versions like 3.0 and 3.1, both the runoff generation and routing 393 

processes are based on the full configuration of the LISFLOOD model, the former of which is an offline version provided by 394 

Alfieri et al. (2020), and the latter is an operational online version that was released in early 2020 with some changes in web 395 

and data services. Despite this, we take both into consideration as they are the only datasets providing near-real-time discharge 396 
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information. All the versions of GloFAS used in our study have been calibrated by more than 1,200 gauge stations worldwide, 397 

which greatly improves the performance than those without any calibrations (Alfieri et al., 2020). Some procedures are needed 398 

for discharge-type R datasets (i.e., WGHM and GloFAS-family products) to find the grid cell coinciding with the river mouth 399 

of the basin. For example, we find the certain grid with the maximum drainage area within the basin based on the static total 400 

upstream area file provided by GloFAS, which is defined as the catchment area for each river segment (i.e., the total area that 401 

contributes to water to the river at the specific grid point). Then, the discharge forecast of that grid point should be divided by 402 

the corresponding drainage area to be converted into equivalent water depth. For the global land, the total freshwater flowing 403 

into the ocean is estimated as the sum of the discharge of all the coastal grid cells based on a mask at the corresponding 404 

resolution (e.g., 0.1° for GloFAS). As such, the differences in the spatial resolution (e.g., 0.5° for the WGHM and 0.1° for the 405 

GloFAS) can contribute to some discrepancies in the final estimates of R. Finally, it is worth mentioning that we manually set 406 

the R-value as zero for the 13 endorheic basins without runoff flowing into the ocean, except for Volga, Ural, and Kura River 407 

basins that flow into the Caspian Sea (Fig. 1 and Table S2). 408 

3.3 Terrestrial water storage 409 

Seven global terrestrial water storage datasets are used to derive ΔS and input the water balance equation. Six of these TWS 410 

datasets are GRACE solutions and one is from the WGHM. The GRACE mission has been the preferable tool to assess the 411 

large-scale variations in terrestrial water storage at a near-monthly scale from 2002 to 2017, with the GRACE Follow-On 412 

successor satellite launched in 2018 (Tapley et al., 2004; Kornfeld et al., 2019). There are generally two classes of methods to 413 

retrieve TWS anomaly signals from GRACE measurements, the spherical harmonic (SH) and the mass concentration blocks 414 

(mascon) methods. The SH method is a standard for the first decade of the GRACE era, which is processed by parameterizing 415 

the global time-varying gravity field using SH coefficients (Wahr et al., 1998). However, such a method should undergo a 416 

series of post-processing of the truncation of degree/order in SH coefficients, spatial smoothing, de-correlation filtering, and 417 

replacement of low-degree coefficients, etc. Various background models, such as glacial isostatic adjustment and de-aliasing, 418 

should also be considered. Therefore, different methods have been developed to restore the signal leakage and bias introduced 419 

during the post-processing. These methods include additive and multiplicative approaches, model-based scaling factors, data-420 

driven methods, and constrained and unconstrained forward modeling methods (Long et al., 2015; Chen et al., 2019; 421 

Vishwakarma et al., 2017). However, the mascon method has provided another user-friendly option for the community in 422 

recent years, which functions by parameterizing the Earth’s gravity field with the regional mass concentration functions. This 423 

kind of method does not need substantial post-processing techniques for signal restoration and can attenuate the noise during 424 

the gravity inversion process through regularization of the solution (Save et al., 2016; Xiong et al., 2022a). So the increasing 425 

attention in the non-geophysical community has been attracted by the mascon solution over the years (Abhishek et al., 2021). 426 

However, it is noticed that different GRACE ground system institutions can perform the post-processing for the fundamental 427 

level-1 GRACE data using different strategies, for example, the varying algorithms to the effect of glacial isostatic adjustment 428 

and the regularization or stabilization of the regional mass concentration functions may affect the hydrological analysis at 429 
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smaller scales (<~3°) (Scanlon et al., 2018; Watkins et al., 2015; Vishwakarma, 2020). In this case, we collected the latest 430 

Release Version 06 level-2 SH solutions from different official GRACE processing agencies, including the University of Texas 431 

Center for Space Research (CSR), NASA's Jet Propulsion Laboratory (JPL), and GeoforschungsZentrum Potsdam (GFZ), as 432 

well as three level-3 mascon solutions from CSR, JPL, and NASA’s Goddard Space Flight Center (GSFC) during the period 433 

April 2002-December 2021, which is the longest time span that GRACE (and GRACE Follow-On) can achieve at the present 434 

stage. The signal leakage and bias in three SH solutions are corrected using the forward modeling method, with the above-435 

mentioned standard processing procedures performed (Swenson and Wahr, 2006). The mascon JPL solution that employs a 436 

Coastal Resolution Improvement (CRI) filter that reduces signal leakage errors across coastlines has undergone the adjustment 437 

from official scaling factors based on the CLM land surface model (LSM) (Wiese et al., 2016). As previously mentioned at 438 

the beginning of the Data section, the inconsistent spatial resolution of different mascon solutions will not impact the ET-WB 439 

calculations as we only perform the water balance budget at the basin (and global) scale (Save et al., 2016; Loomis et al., 2019). 440 

The 33 missing months due to the data gap between two generations of GRACE missions and instrumental issues have been 441 

statistically interpolated using a recently proposed method based on the Singular Spectrum Analysis method (Yi and Sneeuw, 442 

2021). This method can infer missing data from long-term and oscillatory changes extracted from available observations and 443 

does not rely on any external forcing, thus avoiding the uncertainty introduced by other datasets (e.g., precipitation).  444 

Apart from the GRACE solutions, the simulations from the WGHM model are also used to avoid the strong correlation 445 

among GRACE solutions and provide a potential alternative viewpoint. The WGHM simulations of TWS include most of the 446 

key components in the land system, including canopy, snow and ice, soil moisture, groundwater, and surface water bodies 447 

(e.g., river, lake, wetlands, and reservoirs). However, the glacier water storage is not simulated in WGHM, which might induce 448 

some errors in high-latitude cold regions (Müller Schmied et al., 2021). The major human interventions such as dam 449 

management and human water use are also considered, which have been reported to greatly impact the regional terrestrial 450 

water storage balance (Rodell et al., 2009). This is the main advantage of the selected WGHM over other widely used 451 

GHMs/LSMs, such as GLDAS VIC and Noah models. GRACE solutions generally provide the anomalies of TWS relative to 452 

a long-term mean, but the WGHM simulates the actual value of TWS. However, this will not affect our derivation for the ΔS 453 

and the subsequent ET-WB estimations. 454 

3.4 Evaporation 455 

Benchmarking ET-WB against other global ET products is crucial to evaluate its performance. With the principle of ‘different 456 

types of datasets have their unique values’ in mind, four different categories of auxiliary ET products have been chosen for 457 

comparison with ET-WB at multiple time and space scales. These include the MODIS Global Evapotranspiration Project 458 

(MOD16A2), the FLUXCOM ensemble dataset, the Global Land Evaporation Amsterdam Model (GLEAM), and the 459 

simulations from WGHM. The MOD16A2 product estimates the terrestrial ET as the sum of evaporation from soil and canopy 460 

layer and the transpiration from plant leaves and stems (Mu et al., 2011). This satellite-based dataset is estimated under the 461 

framework of the Penman-Monteith equation with the effective surface resistance to the evaporation from the land surface and 462 
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transpiration from plant canopy, which is estimated based on the MODIS remotely sensed data including surface albedo, land 463 

cover classification, and vegetation information. The MOD16A2 dataset was originally produced at a spatial resolution of 1km 464 

and a temporal resolution of 8-day from 2000-2014. However, we used the re-processed monthly 0.5° product provided by the 465 

Numerical Terradynamic Simulation Group (NTSG) at the University of Montana 466 

(http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/). The FLUXCOM “remote-sensing” database (“RS” setup) employs 467 

nine machine learning algorithms to integrate ~20,000 flux observations across the globe with the satellite-based predictors 468 

from the MODIS mission (Jung et al., 2019). Therefore, it is considered an observation-driven product of three energy balance 469 

variables, namely, net radiation, latent energy, and sensible heat. Nonetheless, the product is subject to uncertainty in the choice 470 

of prediction models and is also limited in spatial/temporal resolution (0.0833°/8-daily) and time coverage (2001-2015) of the 471 

satellite inputs. Similarly, we used the re-processed monthly version of the product with a resolution of 0.5° by spatial and 472 

temporal aggregation, which is the median value of the ensemble members per grid cell and month. A key difference between 473 

the FLUXCOM and other ET datasets is that the former focuses only on the vegetated region because of the lack of eddy tower 474 

observations in these regions, meaning the ET values in unvegetated (barren, permanent snow or ice, water) area was omitted. 475 

We convert the latent energy data to ET by dividing it with the latent heat of vaporization, a constant value of 2.45 MJ/kg (or 476 

multiplying 0.408 kg/MJ) or 28.35 W/m2. We note the FLUXCOM database also develops the “RS+METEO” setup that uses 477 

daily meteorological data and mean seasonal cycles of satellite data with three machine-learning approaches. Since the 478 

differences between these two setups over global basins are still unclear, and beyond the scope of our study, only the “RS” 479 

setup is chosen for comparison and demonstration with ET-WB. It needs to be mentioned that we did not use the in-situ 480 

measurements from the regional FLUXNET eddy covariance towers because of the uneven and sparse distribution from a 481 

global perspective, which is not consistent with the spatial scale of ET-WB. In addition, the GLEAM model estimates the 482 

terrestrial ET separately, which comprises the individual components of transpiration, interception loss, bare soil evaporation, 483 

snow sublimation, and open-water evaporation (Martens et al., 2017). It firstly estimates the potential ET using the Priestley-484 

Taylor equation based on satellite observations of surface net radiation and near-surface air temperature, then converts the 485 

potential ET to actual ET using the evaporative stress factor, which is estimated from the remote sensing vegetation microwave 486 

vegetation optical depth and predicted root-zone soil moisture from a water balance model. The GLEAM is more inclined to 487 

a ‘reanalysis’ dataset as it does not use the satellite observations directly (like MOD16A2) but indirectly includes the satellite 488 

observations to estimate ET. Similar to the FLUXCOM dataset, the GLEAM product also has two sub-versions, ‘a’ and ‘b’, 489 

with the main difference in the time span (1981-2021 for ‘a’ and 2003-2021 for ‘b’) due to different inputs considered. We 490 

choose version 3.6a to compare with ET-WB. Finally, the hydrological simulations of ET from WGHM are also included for 491 

data consistency, which was previously used to contribute to the runoff, terrestrial water storage, and precipitation (WFDEI 492 

forcing) estimations. Moreover, an alternative source (GHM) of ET can also strengthen the justification upon the comparison 493 

with derived ET-WB.  494 
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4 Results 495 

4.1 Global evaluation of ET-WB 496 

4.1.1 Monthly assessment 497 

Comparison and analyses of ET-WB and auxiliary ET datasets are carried out at various temporal scales to examine the 498 

reliability of ET-WB comprehensively. The long-term average seasonal cycle of ET during the period 2002-2021 is detected 499 

over global land (Fig. 3a). A clear unimodal distribution is observed with the highest ET in July (median value: 65.61 500 

mm/month (mm/m)) and the lowest result in January (median value: 36.11 mm/m) based on ET-WB, with the spread range of 501 

roughly ±10 mm/m from different subsets of the ensemble. Furthermore, the seasonal cycle of other ET products is generally 502 

within the range of ET-WB ensemble with similar intra-annual characteristics. All of the GLEAM, MODIS, and WGHM data 503 

illustrate an overestimation of ET from March to June and an underestimation between September and November compared 504 

with the median values of ET-WB, but they are completely within the range of the ET-WB ensemble. Nevertheless, the 505 

FLUXCOM product tends to have higher ET than ET-WB due to the fact that FLUXCOM only considers the ET in the 506 

vegetated regions, and the unvegetated areas, such as those in the deserts of Sahara and Qinghai-Tibetan Plateau are masked 507 

(Jung et al., 2019). This would subsequently influence our comparisons in basins with a certain proportion of unvegetated area 508 

and the global land.  509 

The seasonal pattern of ET-WB is highly consistent with that of precipitation in both amplitude and periodicity, which 510 

generally increase from the beginning to the middle of a year, followed by a gradual decrease. This contemporaneous relation 511 

between ET and P without time lag is also revealed by Rodell et al. (2015). However, the spread range in P is wider than ET-512 

WB, meaning it is an important contributor to the uncertainty of the ET-WB, especially in water-limited months like February, 513 

April, and November (Fig. 3b). In addition, we also found that the seasonal cycle of ΔS presents a reverse distribution than 514 

other water components (e.g., P and R), in which ΔS decreases from positive to negative in the first half of the year (January 515 

to June) and then slowly rebound until the end of the year. In other words, the land system is losing water from April to October 516 

and gaining water until April of next year, implying a significant time lag between terrestrial water storage and P on a global 517 

scale (Fig. 3c). The narrow spread range of ΔS is attributed to the high agreement between the six GRACE solutions used, not 518 

showing the real uncertainty of TWSA (ΔS) estimates. Counterintuitively, P lags R by two months, possibly related to the 519 

snowpack immobilization and the strength of summer convective rainfall in high-latitude regions (Rodell et al., 2015). 520 

Additionally, R demonstrates an interesting distribution with a constrained change range in all months with a few 521 

overestimations. It should be stemming from the reduced uncertainty in the choice of R datasets because we used the 23 (out 522 

of 29) G-RUN ENSEMBLE subsets that were generated using the same model but forced by different forcing, together with 523 

the interventions from other datasets (e.g., GloFAS reanalysis) (Fig. 3d).  524 

 Multiple statistical metrics are used to quantify the relative performance of the ET-WB product, which are calculated 525 

using the ensemble median ET and other global ET datasets. Global examinations of the relative bias (RB) based on different 526 

auxiliary datasets on the monthly scale indicate an overall agreement with ET-WB, with most (74%, 63%, 57%, and 77% for 527 
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GLEAM, FLUXCOM, MODIS, and WGHM, respectively) river basins having RB between -20% and 20% (Fig. 4). For the 528 

global land, the RB reaches 1.22%, -17.31%, -3.68%, and 2.96% for above four products, correspondingly, but with strong 529 

spatial heterogeneity among basins. Specifically, widespread overestimation of ET-WB than other datasets are reported in East 530 

Europe, West Russia, South and East Asia, and West Australia, with the maximum RB of nearly 300% in the Ashburton River 531 

basin (ID: 138) of Australia based on the MODIS ET dataset. On the contrary, the consistent underestimation of ET-WB 532 

compared with other products is also seen in West Europe, East Russia, and Southeastern basins of Australia, where RB is 533 

mostly small. However, divergent patterns of different ET datasets in parts of South and North America, Africa, and Central 534 

Asia highlight inherent uncertainty in each product and that it is impossible to have a single best-performing ET dataset for 535 

the whole globe. However, the RB values of ET-WB are within the range of ±20%, meaning the ET-WB is comparable to 536 

these ET products and, therefore, can serve as an independent benchmarking product (Figs. 4a, 4c, 4e, and 4g). Alternative 537 

metrics like CC and NSE provide additional insights. Relatively better performance of ET-WB is apparent in the humid basins 538 

of high-latitude Eurasia, North America, and South China according to the comparably higher CC (>0.8) and NSE (>0.4) than 539 

other regions like South America and Africa (Figs. S2 and S3). This might be due to better simulation accuracy of, for example, 540 

reanalysis and GHMs, in humid zones than in arid regions. Though the reported NSE value may not appeal as satisfactory in 541 

an absolute sense, it only represents the median ET-WB. Distinctive choice of ET subset over different regions may lead to 542 

improved results, albeit without informing the full spread of the uncertainties. Additionally, RMSE results further convey 543 

higher errors of ET-WB in smaller regions than in larger ones (Fig. S4) because of the reduced retrieval errors of GRACE 544 

solutions as the basin size increases (Scanlon et al., 2018). The notable exception is the Amazon River basin (ID:1), which 545 

shows inconsistency between ET-WB and different ancillary products (e.g., GLEAM and MODIS). It is similar to a recent 546 

regional study (Baker et al., 2021), although a strong agreement between water balance ET and shortwave radiation was 547 

observed. For all the 168 basins, the scatter plots illustrate a reasonable agreement between ET-WB and multiple ET datasets 548 

(Figs. 4b, 4d, 4f, 4h). Despite the very small RB (from 0.09% of WGHM to -7.96% of MODIS), the skewed estimates are 549 

discovered in high-ET periods and regions, while most points having small ET values are perfectly located around the 1:1 line. 550 

Another discrepancy between ET-WB and other datasets is the existence of negative values of the former primarily in high-551 

ET regions/periods, which is very likely resulting from the non-closure error among various water balance datasets (Pan et al., 552 

2017; Rodell et al., 2011; Lehman et al., 2022) along with their respective shortcomings (e.g., non-consideration of river 553 

routing in G-RUN Ensemble runoff data) and should be delved into in future studies.  554 

 555 

 556 

https://doi.org/10.5194/essd-2023-188
Preprint. Discussion started: 25 May 2023
c© Author(s) 2023. CC BY 4.0 License.



23 
 

 557 
Figure 3: Monthly average values of the ET-WB and multiple auxiliary ET products as well as other water components over global 558 
land during the period 2002-2021. The shading shows the spread range among different datasets. 559 
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Figure 4: Comparisons between the ET-WB and multiple auxiliary ET products (a, b: GLEAM; c, d: FLUXCOM; e, f: MODIS; g, 561 
h: WGHM) on a monthly scale during the period 2002-2021. The left column represents the global distribution of RB, and the right 562 
column represents the corresponding scatter plots. The color of the scatter points indicates the kernel density. 563 

4.1.2 Annual assessment 564 

Inter-annual variability of ET and related water balance components are also examined over global land (Fig. 5). There are 565 

generally three episodes shown in the ET-WB dataset. These include a gradual increase from 2003 to 2010 and a subsequent 566 

decrease during 2010-2015, followed by a sharper reduction in the remaining years (Fig. 5a). A large inter-ensemble range, 567 

which aggravates during the recent time periods, due to the propagation of errors in monthly estimations of water balance ET 568 

is found. Other ET datasets, despite the different time spans, still present a similar variability to ET-WB with the 569 

overestimations in MODIS and FLUXCOM. As discussed above, the significant differences from FLUXCOM can be 570 

attributed to the specific data generation method. Furthermore, the annual variations of ET are typically explained by the 571 

changes in P, which experienced an increasing trend during 2003-2010, followed by an abrupt decrease between 2010 and 572 

2015 (Fig. 5b). However, the increase of P during 2015-2021 does not directly translate to the enhancement of ET based on 573 

ET-WB results, though the GLEAM shows a more ‘reasonable’ increase under the assumption of the limited influence of the 574 

human interventions on the global ET on an annual scale. This inconsistent phenomenon is because of the significant increase 575 

of R values since 2015 (particularly in 2020 and 2021), which are mainly driven by GloFAS reanalysis data as the 23 G-RUN 576 

ENSEMBLE subsets are not available from 2020 (Fig. 5d). Therefore, the overestimation of R in GloFAS data can explain the 577 

abrupt change in ET-WB over recent years, implying that caution should be taken when interpolating the ET-WB results after 578 

2019 due to the availability of the limited dataset. This is not only because of the controlling role of specific water components 579 

in ET-WB (e.g., a wide range of P similar to ET) but also the limited data availability due to delayed updates (e.g., G-RUN 580 

ENSEMBLE). Moreover, ΔS does not play a crucial role on an annual scale because of the relatively small amplitude and the 581 

confident estimations of GRACE signals in such a large area (Fig. 5c). 582 

 Statistical metrics are re-assessed on an annual scale to evaluate the differing performance of ET-WB across temporal 583 

scales. A similar spatial pattern is revealed according to the RB results but slightly degrades over most basins, which is 584 

seemingly caused by error accumulation from water components and the relatively short time span for calculation (e.g., 19 585 

years) (Fig. 6). For the global land, the RB reaches -0.05%, -18.07%, -4.61%, and 1.73% for the GLEAM, FLUXCOM, 586 

MODIS, and WGHM, respectively. Alternate metrics such as CC and NSE also indicate deteriorating accuracy of ET-WB 587 

after converting from monthly to the annual time scale for the single basin, while RMSE is improved if we use the same unit 588 

(Figs. S5-S7). However, the scatter plots of annual ET in a total of 168 basins between ET-WB and auxiliary datasets show 589 

significant improvements to that on the monthly scale due to the offsets of negative ET values within a year and more benign 590 

fluctuations of annual ET than the monthly series. For example, the fitted slope of the regression between ET-WB and other 591 

datasets is 0.92 (GLEAM), 1.03 (FLUXCOM), 0.93 (MODIS), and 1.01 (WGHM), respectively, with higher CC and NSE 592 

compared with their monthly counterparts.  593 

 594 
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 595 

 596 
Figure 5: Annual time series of ET-WB and multiple auxiliary ET products as well as other water components over global land 597 
during the period 2003-2021. The ET in 2002 is excluded from the calculation because of the missing values from January to April 598 
2002. The shading shows the spread range among different datasets. 599 
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Figure 6: Comparisons between the ET-WB and multiple auxiliary ET products (a, b: GLEAM; c, d: FLUXCOM; e, f: MODIS; g, 601 
h: WGHM) on the annual scale during the period 2002-2021. The left column represents the global distribution of RB, and the right 602 
column represents the corresponding scatter plots. The color of the scatter points indicates the kernel density. 603 

 604 

4.2 Spatiotemporal variation of ET-WB 605 

Spatiotemporal variability of ET from the ET-WB and other auxiliary ET products are assessed for comparison. The long-term 606 

mean of annual ET based on the ET-WB illustrates a clear spatial pattern, with relatively higher ET in humid zones of South 607 

America, Eastern North America, central South Africa, and South Asia, while the lower ET in arid regions of Western United 608 

States, North and South of Africa, Central Asia, and Australia (Fig. 7a). Specifically, the Kapuas River basin (ID: 131) in 609 

Indonesia has the highest ET-WB flux of 1565 mm/yr due to the hot and humid climate regionally (Hidayat et al., 2017). The 610 

endorheic Tarim River basin (ID: 14) in northwest China has the lowest annual ET of 127 mm/yr among 168 study basins 611 

because of the prevailing extremely dry climatic conditions. The homogeneous spatial patterns between ET-WB and GLEAM, 612 

FLUXCOM, and MODIS products can further validate the reliability of ET-WB (Fig. S8). In addition, WGHM reports a 613 

slightly different distribution from the other three datasets and ET-WB, which can result from modeling uncertainty due to 614 

simplified model parameterization and the un-calibrated ET simulations (Müller Schmied et al., 2021). Specifically, we 615 

observe the consistent overestimations of ET-WB than other datasets in East Europe, West Russia, South and East Asia, and 616 

West Australia, especially in the wet areas like the Yangtze (ID: 13) and Mekong (ID: 31) River basins. On the contrary, 617 

relative underestimations are observed in West Europe, East Russia, and Southeastern basins of Australia (Fig. 7). The 618 

divergent patterns between ET-WB and different datasets are seen in large-scale regions of South and North America, Africa, 619 

and Central Asia. Nevertheless, the regional differences are mostly within the range of ±100 mm/yr, which is a relatively small 620 

range for basins with higher ET values, unlike the dry basins with relatively small ET (Figs. 7c-7f). The spatial distributions 621 

of differences between ET-WB and other datasets are similar to the RB results (Fig. 4), which manifests from the homologous 622 

calculation formula (Eq. 5). For the global land, the long-term mean annual ET estimates from ET-WB are concentrated within 623 

the range of 500-600 mm/yr among ensemble members, with the median estimates of 549 mm/yr (Fig. 7b). This number is 624 

comparable to the result from GLEAM (543 mm/yr), MODIS (569 mm/yr), and WGHM (534 mm/yr). The relatively higher 625 

value of global ET from FLUXCOM (663 mm/yr) is attributable to the exclusion of the unvegetated area in the global 626 

averaging, while it has shown good agreement with several global products (e.g., GLEAM) in the vegetated area (Jung et al., 627 

2019).  628 

 The annual trends of ET from various datasets during 2003-2014 are assessed. The calculation period is selected to 629 

be consistent with the temporal span of different products, which can cause some biases in determining trends due to the 630 

relatively short computation period (i.e., 12 years). The ensemble median results of the ET-WB ensemble reveal a spatial 631 

distribution with the increasing ET detected in South America (around the Amazon River basin), Europe, East Russia, South 632 

and East Asia, South and North Africa, and Australia. Over these regions, the Burdekin River basin (ID: 94) in Australia has 633 

the most rapid growth rate of 31.4 mm/yr2, which is about 100 times the slowest increasing slope (0.3 mm/yr2) in the Alazeya 634 
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River basin (ID: 165) of Russia (Fig. 8a). Significant depletion of ET is observed in the central North America and Africa 635 

continents as well as West Russia with the lowest trend of -22.8 mm/yr2 in the Moose River basin (ID: 107) of Canada. We 636 

also noticed similar spatial patterns based on other auxiliary ET datasets (Fig. S9), however, with the differences in the 637 

magnitudes of trends. Such differences are reasonable because the trend estimations contain uncertainty in a short 12-year long 638 

period, let alone the errors inherent to various products. Therefore, we see an interesting spatial distribution of the differences 639 

between ET-WB and other datasets (Figs. 8c-8f), where the regional differences in trends are similar to the actual trend 640 

summarized by the corresponding dataset (Fig. S9). In particular, ET-WB is prone to overestimate the trends for regions with 641 

increasing ET, and the overestimations are larger if the trends are larger (based on other ET datasets), and vice versa. In a 642 

nutshell, unlike TWS/P-based evaluation (Held and Soden 2006; Xiong et al., 2022b), the ‘dry gets drier and wet gets wetter’ 643 

paradigm can be typically inferred from ET-WB on a basin scale, which generally exaggerates the prevailing 644 

increasing/decreasing ET tendencies in the basins (Yang et al., 2019). On a global scale, the median value of trend estimates 645 

from ET-WB ensemble members is 1 mm/yr2, very close to the results from GLEAM (0.8 mm/yr2) and WGHM (0.8 mm/yr2). 646 

However, both FLUXCOM and MODIS report small negative values of -0.3 and -0.1 mm/yr2, respectively, which still fall 647 

within the spread range of the ET-WB ensemble estimations (Fig. 8b). 648 

 649 
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 650 
Figure 7: Global distribution of (a) the long-term mean in annual ET-WB and (c-f) its difference with multiple auxiliary ET products 651 
during 2003-2021. The long-term mean is calculated as the sum of the long-term averages of ET in each month. Subplot (b) shows 652 
the histogram and the probability density distribution of the ET-WB ensemble results over global land. 653 

 654 
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 655 

Figure 8: Same as Figure 7, but for the annual trends. The ET in 2002 and after 2014 are excluded from the calculation because of 656 
the missing values of GRACE data in 2002 and the missing values of MODIS product after 2014. The trend is calculated by using 657 
Sen’s slope method. Subplot (b) shows the histogram and the probability density distribution of the ET-WB ensemble results over 658 
global land. 659 

 660 

4.3 Uncertainty in ET-WB 661 

Quantification and attribution of uncertainty in the ET-WB ensemble play important roles in the justification and potential 662 

usages of the proposed dataset. Based on the methods described in Section 2.3, we present the global distribution of the RMS 663 

values of uncertainty in ET-WB and related water components as well as the auxiliary ET products (Fig. 9). We observe a 664 

clear spatial pattern of the uncertainty, which generally increases along with the reduction in basin size. Several large-size 665 

basins, such as Ob (ID: 5), Yenisey (ID: 7), and Lena (ID: 9) River basins, possess a lower uncertainty (<20 mm/m) compared 666 

to those medium-size basins like Mekong (ID: 31) and Ganges (ID: 22) River basins where uncertainties in ET-WB are between 667 
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40 and 80 mm/m. However, the small-size basins suffer from substantial uncertainties in ET-WB, even exceeding 100 mm/m 668 

in some regions of mainland Australia and Europe (Fig. 9). The worst phenomenon happens in the Essequibo River basin (ID: 669 

156), with the RMS of the uncertainty of 267 mm/m primarily arising from the high uncertainties in GRACE data (Fig. 9a). A 670 

seemingly more optimistic situation is observed from the uncertainty of four auxiliary ET products, where the low-latitude 671 

humid zones apparently suffer from higher uncertainty than the high-latitude regions, though they are essentially smaller than 672 

30 mm/m with the maximum of 65 mm/m in the Ogooue River basin (ID: 68) of Gabon (Fig. 9c). It is not surprising because 673 

the uncertainty in ET-WB is propagated from three water components including P, ΔS, and R, but that in the auxiliary ET 674 

products in our study is calculated as the standard deviation among four datasets. Despite this, the performance of ET-WB 675 

over large basins is still comparable to these ET datasets, whose uncertainties share similar spatial distribution with P to a 676 

certain degree. As an important input for GHM and some other ET products (e.g., “RS+METEO” setup of FLUXCOM), P can 677 

determine the actual performance of the auxiliary ET products. It can even determine the uncertainty in R datasets which 678 

subsequently contributes to the uncertainty of G-RUN ENSEMBLE; the main data for our water balance forcing (Figs. 9d and 679 

9f). However, the “reduction-with-increasing-size” pattern of uncertainty in ET-WB seems more relevant to the uncertainty in 680 

ΔS datasets, which is from six different GRACE solutions and a set of simulations from WGHM. It has been widely reported 681 

that the retrieval bias of GRACE missions is higher in smaller regions due to the coarse spatial resolution and the pronounced 682 

signal leakage effects (Scanlon et al., 2018) (Fig. 9e). This is contended to be the main reason for the similar distribution and 683 

amplitudes of uncertainty in ΔS and ET-WB for smaller basins, while the uncertainty in ET-WB over larger basins is mainly 684 

controlled by other factors like P. However, over a global scale, the uncertainty of ET-WB that roughly fluctuates below 15 685 

mm/m (RMS: 9.7 mm/m) is controlled by that of P (RMS: 8.3 mm/m), the uncertainty in ΔS is relatively small because of the 686 

very large area (Fig. 9b). The sharp increase in uncertainty of R from the year 2020 is caused by the unavailability of 23 G-687 

RUN ENSEMBLE datasets. Similarly, the abrupt decrease of uncertainty in auxiliary ET products after 2015 is due to the 688 

limited time coverage of FLUXCOM and MODIS products, with an RMS of 5.3 mm/m over the whole period. This different 689 

behavior underscores the potential users to pay attention to the number of datasets used to produce ET-WB. In addition, ET-690 

WB will be updated as the new/updated versions of these constituent datasets are released to constrain such uncertainties. 691 

 To further investigate the influential factors to the uncertainty in multiple variables, the relationship between the 692 

uncertainty and basin size, climate conditions (represented as the long-term mean AI), and human interventions (represented 693 

as the irrigation rate, which is defined as the equipped irrigation area versus the basin area) are detected (Fig. 10). As we 694 

described above, the obvious relationship between uncertainty in ΔS and basin size governs the increasing uncertainty of ET-695 

WB along with the enhancement of basin area, while the uncertainty in auxiliary ET products generally keep at a lower level 696 

of uncertainty similar to P and R (Fig. 10a). Although other variables like P and R do not show any pattern associated to the 697 

basin area, they present favorable dependence upon the aridity of the basin, where they are inclined to have higher uncertainty 698 

in more humid regions with higher AI (Fig. 10b). No clear pattern between ET uncertainty and irrigation area can be apparently 699 

deduced, whereas it is worth mentioning that the significant irrigation equipped for groundwater resources can lead to 700 

significant short-term and long-term variations of, for example, ΔS and R, which is the case in some basins in North China 701 
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(e.g., Haihe River basin, ID: 67) and North India (e.g., Indus River basin, ID: 27) (Fig. 10c). The human-induced inordinate 702 

fluctuations of water balance (e.g., through reservoir management, groundwater extraction) can influence the quality of ET-703 

WB by impacting the accuracy of the specific forcing variable (e.g., R). Finally, the uncertainty in ET-WB can be further 704 

intensified for the small wet basins with significant human disturbance, so caution should be particularly taken when drawing 705 

scientific conclusions using ET-WB in those regions. 706 

 707 

Figure 9: RMS of uncertainty in the ET-WB and different water components over global basins. Subplot (b) shows the time series 708 
of uncertainty in different variables over global land. The NA values in sub-plot (f) R are because the runoff is manually set as zero 709 
in these regions. Please refer to the Data section for details. 710 
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 711 

Figure 10: Relationship between RMS of uncertainty in the ET-WB, auxiliary ET products, different water balance components, 712 
and (a) size, (b) aridity index, and (c) irrigation rate of the basins. 713 

5 Discussions 714 

5.1 Comparisons with previous regional studies 715 

Although a global compilation of water balance estimations of ET is still lacking, previous regional studies have demonstrated 716 

the applicability of the water balance ET at different basins of the world. Comparisons with such regional studies are beneficial 717 

to the benchmark of ET-WB. Rodell et al. (2004) initially proposed the plan to retrieve ET on basin scales based on the water 718 
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balance model and early GRACE data and applied it in the Mississippi River basin (ID: 4) from July 2002-November 2003. 719 

By comparing with model predictions of ET, the RMS differences between water balance ET and GLDAS, GRDS, and 720 

ECMWF-based ET were found to be 0.83, 0.67, and 0.65 mm/day (equivalent to 24.9, 20.1, and 19.5 mm/m), respectively 721 

(Rodell et al., 2004), which are comparable to our RMSE results on the monthly scale, i.e., 19.46 (GLEAM), 18.41 722 

(FLUXCOM), 24.29 (MODIS), and 23.04 (WGHM) mm/m. Given the significance of the water balance method in ungauged 723 

regions, several studies have tested its performance in the data-sparse Tibetan Plateau (Xue et al., 2013; Li et al., 2014; Li et 724 

al., 2019). For example, Xue et al. (2013) compared four ET products, including GLDSA, JRA, MODIS, and Zhang_ET 725 

(Zhang et al., 2010), against the water balance ET in the upper Yellow (ID: 24) and Yangtze (ID: 13) River basins, revealing 726 

the overestimations of GLEAM and MODIS relative to the water balance ET. These comparisons are similar to the RB 727 

examinations in our study based on ET-WB. As the largest river basin of India that accounts for 26% of the country’s landmass, 728 

the Ganges River basin (ID: 22) shows a mean monthly average ET of 63.2 mm/m (Syed et al., 2014), which is comparable to 729 

60.9 mm/m calculated in our study despite the different study periods. A case study in the Volta River basin (ID: 46) of Africa 730 

reported the annual fluctuations of water balance ET ranging from 700 to 800 mm/yr during the period 2004-2011 (Andam-731 

Akorful et al., 2015), relatively lower than the long-term mean ET-WB of 830 mm/yr. The relative accuracy of water balance 732 

ET in the exorheic river basins of China has also been previously evaluated. For example, Zhong et al. (2020) employed the 733 

water balance equation to estimate regional ET and compared them with the GLEAM and GLDAS products, concluding the 734 

uncertainty of monthly ET of 14.7 mm/m in the Yellow River basin (ID: 24) and 35.9 mm/m in the Pearl River basin (ID: 48), 735 

nearly half of the estimates in our study, i.e., 27.0 and 71.7 mm/m in these basins, respectively, primarily due to different 736 

datasets and methods used. We note these regional studies generally used observed and typically single-source water 737 

components data like P and R, which can be the reason for the differences with our results based on multi-source data-based 738 

calculations. Moreover, the difference in study region boundaries, data processing algorithms, calculation scheme of the 739 

terrestrial water storage change, and time period may reflect the disparities in the estimates (Rodell et al., 2004). 740 

 A few global analyses can also provide an important reference for the ET-WB developed in our study. Specifically, 741 

Zeng et al. (2012) collected in-situ runoff, precipitation, and GRACE data to estimate ET over 59 major river basins during 742 

2003-2009, highlighting the fact that ΔS cannot be neglected in the water balance computations. This finding implies the 743 

importance of including GRACE TWSA (ΔS) in the water balance closure at basin scales. Ramillien et al. (2006) applied the 744 

GRACE samplings, GPCC precipitation, and modeled runoff to estimate ET time series over 16 drainage basins of the world, 745 

in which the extreme errors (1.8 mm/day, 50% relative error) as expected by the accuracy of model runoff in the Amazon (ID: 746 

1) River basin, is emphasized to influence the regional ET estimations. This well corresponds to the high uncertainty estimates 747 

of P, R, and therefore ET-WB in both long-term mean and annual trend levels of our study. Similar to the examinations of 748 

long-term mean and annual trends in our study, a previous global evaluation of water balance ET estimates against nine ET 749 

products over 35 basins points out that water balance ET can reasonably estimate the annual means (especially in dry zones 750 

with relatively lower uncertainty) but substantially underestimated the inter-annual variability in terms of annual trends and 751 

mean annual standard deviation (Liu et al., 2016). Furthermore, the comprehensive uncertainty analysis for ET products from 752 
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four LSMs in NLDAS, two remote-sensing-based products including MODIS and AVHRR, and water balance estimations 753 

show the highest uncertainty in the latter (20-30 mm/m) over the different climatic regions (from humid to arid) in South 754 

Central United States (Long et al., 2014). The finding confirms the pattern of obviously higher uncertainty in ET-WB than 755 

auxiliary ET products in several arid basins in Western United States in our study. A recently published global ET product 756 

based on the three-temperature model used the water balance ET in 34 catchments worldwide as a benchmarking product, 757 

revealing the RB mostly ranging from -25 to 25% on the annual scale, with the underestimation of water balance ET in high 758 

latitudes (Yu et al., 2022). The comparisons are quite relevant to the results of ET-WB, which also underestimates ET in East 759 

Russia and Northern North America by comparing with, for example, GLEAM and MODIS products. Overall, the results of 760 

our proposed ET-WB datasets are consistent with previous regional and global studies, more importantly, cover the most recent 761 

time periods, and provide observational constraints to the global and regional ET leveraging huge datasets of water balance 762 

components. 763 

5.2 Implications, limitations, and future outlook 764 

The production of ET-WB ensemble datasets can benefit the future hydrological community in various ways. First of all, the 765 

ET-WB can provide valuable information for the regional ET variations, greatly enriching the existing ET datasets consisting 766 

of the remote-sensing-based (e.g., MODIS), LSM-predicted (e.g., GLDAS), GHM-predicted (e.g., WGHM), observation-767 

driven (e.g., FLUXCOM), in-situ-based (e.g., eddy tower observations) and other diagnostic datasets (e.g., GLEAM) as well 768 

as the synthetic datasets. Given the non-ignorable differences among the existing ET datasets and an independent mass 769 

conservation-based ET-WB, it can not only help to benchmark other datasets/models of ET but will also contribute to the 770 

validation and calibration of hydrological models across scales. This is particularly useful for poorly gauged regions like the 771 

Qinghai-Tibetan Plateau, African river basins, and high-latitudes cold regions, where the installation and maintenance of the 772 

field observation network are quite challenging (Li et al., 2019). In addition, the ET-WB product will provide additional 773 

information for evaluating water balance closure on the basin and global scales (Lehmann et al., 2022). The ET-WB dataset 774 

that generates ET based on the terrestrial water balance is also dedicated to evaluating other water balance components like R 775 

by combining them with the available hydrological records (e.g., P) regionally or globally (Syed et al., 2010; Chandanpurkar 776 

et al., 2017). Finally, the ET-WB product is conducive to detecting human footprints in the regional water cycle. For example, 777 

Pan et al. (2017) combined the water balance estimations of actual ET and the modeling results without consideration of human 778 

activities to estimate human-induced ET in a highly developed region of China (Haihe River basin), implying a 12% increase 779 

of ET due to human activities such as irrigation. Strong influences of anthropogenic changes to the region ET were also 780 

reported in the Colorado River basin of western United States (Castle et al., 2016). Overall, the developed ET-WB has the 781 

potential to support multi-discipline applications in hydrology and climate fields. 782 

 However, the ET-WB also suffers from a few limitations mainly related to the uncertainty, selection, and assumptions 783 

of datasets involved in water balance computations. As shown in comparison with other ET datasets and the uncertainty 784 

analysis, propagated uncertainty from different variables like ΔS and P can greatly influence the quality of ET estimations. For 785 
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example, the relatively higher uncertainty of GRACE signals in smaller basins increases after the derivation of ΔS subsequently 786 

alters the estimations of ET. Biases in P over humid zones can also play an important role in the performance of regional ET. 787 

In terms of R, since only one of the 29 subsets is from the in-situ discharge and mostly are provided by the observation-driven 788 

machine learning G-RUN ENSEMBLE dataset with varying forcings, the ET estimations for the basins without in-situ 789 

observations might be biased. Further, the G-RUN ENSEMBLE, as a gridded runoff rate product purely forced by 790 

meteorological data, does not physically account for human activities (e.g., dam management) into consideration. Such 791 

simplicities might overestimate or underestimate the actual runoff for the basins with significant human intervention, with the 792 

underlying assumption that the water loss in river channels can be neglected to convert runoff into river streamflow on a 793 

monthly scale. Overall, the inherent uncertainties in multiple water cycle components (P, ΔS, and R) can propagate to the ET-794 

WB product.  795 

To overcome the multisource uncertainties, several suggestions for future use and improvements are provided as 796 

follows: (1) appropriate consideration of human disturbances such as water diversion in water balance estimates of ET should 797 

be highlighted in specific regions (e.g., the South-to-North Water Diversion Project across South and North China); (2) 798 

considering the significant role of the forcing data in determining the accuracy of ET-WB, careful justification of different 799 

inputs (e.g., P) that have better performance for the regions of interest should be performed in combination of regional in-situ 800 

observations; (3) future efforts should incorporate in-situ ET observations from regional eddy covariance towers with 801 

calibration, assimilation, and correction procedures to improve further the accuracy of ET-WB (Billah et al., 2015); (4) 802 

integrated ET products that consider a hybrid approach to integrate strengths of different categories of data, including ET-WB 803 

and satellite products, are worthy of being proposed to further constrain the uncertainties in regional ET (Long et al., 2014). 804 

6 Data availability 805 

All the datasets used in our study are publically available online and have been introduced in the Data section. The ET-WB 806 

dataset is also publicly available in the Version 7.3 MAT-files (Xiong et al., 2023) and can be freely downloaded on the Zenodo 807 

platform (doi:10.5281/zenodo.7314920). 808 

7 Conclusions 809 

In the current study, a global monthly ET product (named ET-WB) over 168 river basins that account for ~60% of the Earth’s 810 

land area except for Greenland and Antarctic ice sheets and global land during May 2002-December 2021, is developed based 811 

on the water balance equation employing 23 precipitation, 29 runoff, and 7 ΔS datasets from satellite products, in-situ 812 

measurements, reanalysis, and hydrological simulations. The performance of ET-WB has been evaluated against four auxiliary 813 

global ET datasets comprising the GLEAM, FLUXCOM, MODIS, and WGHM at various time scales based on different 814 

statistical metrics (i.e., CC, NSE, RMSE, and RB). The long-term mean and annual trend of ET-WB and above ET products 815 
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are also assessed. Uncertainty of ET-WB is quantified by propagating the errors in different water components, and its 816 

relationships with basin size, climate aridity, and human irrigation are also investigated.  817 

 The seasonal cycles of the ET-WB ensemble, mainly dominated by precipitation, generally agree with multiple ET 818 

global products despite the overestimations/underestimations in specific months compared with the median ET-WB results. 819 

Inter-annual variability of global land ET-WB presents a gradual increase from 2003 to 2010 and a subsequent decrease during 820 

2010-2015, followed by a sharper reduction in the remaining years due to the varying P, similar to other ET products. However, 821 

the increase of P during 2015-2021 does not translate to the enhancement of ET because of the overestimated GloFAS 822 

reanalysis and the limited data availability (e.g., G-RUN ENSEMBLE) in the period. Multiple statistical metrics show 823 

reasonably good accuracy of ET-WB, with most river basins having RB between -20% and 20% on a monthly scale. The 824 

performance improves on an annual scale but with strong spatial heterogeneity among different basins.  825 

 The long-term mean annual ET estimates from ET-WB are concentrated within the range of 500-600 mm/yr among 826 

ensemble members with the median estimates of 549 mm/yr for global land, comparable to the result from GLEAM (543 827 

mm/yr), MODIS (569 mm/yr), and WGHM (534 mm/yr). The relatively higher value from FLUXCOM (663 mm/yr) can be 828 

attributed to the non-consideration of the unvegetated area. Regarding annual trends, the ‘dry gets drier and wet gets wetter’ 829 

paradigm can be inferred from ET-WB, which generally exaggerates the prevailing increasing/decreasing ET in basins. On a 830 

global scale, the median value of trend estimates from ET-WB ensemble members is 1 mm/yr2, close to the results from 831 

GLEAM (0.8 mm/yr2) and WGHM (0.8 mm/yr2). However, both FLUXCOM and MODIS report small negative values of -832 

0.3 and -0.1 mm/yr2, respectively, still within the ET-WB ensemble spread range. 833 

The uncertainty of ET-WB that roughly fluctuates below 15 mm/m (RMS: 9.7 mm/m) is primarily controlled by that 834 

of P (RMS: 8.3 mm/m), which is relatively higher than the auxiliary ET products (RMS: 5.3 mm/m) over global land. The 835 

inversely proportional relationship between uncertainty in ΔS and basin size governs the increasing uncertainty of ET-WB 836 

along with the enhancement of basin area. Other variables like P and R present relative dependence upon the basin’s aridity, 837 

where they are inclined to have higher uncertainty in more humid regions with higher AI. Moreover, the significant irrigation 838 

equipped for groundwater resources can lead to significant short-term, and long-term variations of, for example, ΔS and R, 839 

which is the case of some basins in North China (e.g., Haihe River basin (ID: 67)) and North India (e.g., Indus River basin (ID: 840 

27)). The uncertainty in ET-WB can be further intensified for the small wet basins with significant human disturbance, so 841 

caution should be taken when drawing the scientific conclusions using ET-WB over those regions. 842 
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